Schema
Schemas define how each row from CSV/Sheet will be transformed into.
Let's assume this table is the input CSV data:
ID | Name |
---|---|
1 | Samoyed |
2 | Shiba |
Column
Column()
map value from the column in the CSV/Sheets.
If we describe schema as:
ts
import { Column, asString } from 'sheethuahua';
const schema = Column('Name', asString());
In each row, I want a value from column "Name" and parse is as a string.
Then the output will be:
ts
['Samoyed', 'Shiba'];
Object
Object()
define an object data structure.
If we describe schema as:
ts
import { Column, Object, asNumber, asString } from 'sheethuahua';
const schema = Object({
id: Column('ID', asNumber()),
name: Column('Name', asString()),
});
Then the output will be:
ts
[
{ id: 1, name: 'Samoyed' },
{ id: 2, name: 'Shiba' },
];
Tuple
Tuple()
define an array of the exact set of items.
If we describe schema as:
ts
import { Tuple, Object, asNumber, asString } from 'sheethuahua';
const schema = Tuple([
id: Column('ID', asNumber()),
name: Column('Name', asString()),
])
Then the output will be:
ts
[
[1, 'Samoyed'],
[2, 'Shiba'],
];
Nested
Both Object
and Tuple
can be nested.
ts
import { Column, Object, Tuple, asNumber, asString } from 'sheethuahua';
const schema = Object({
id: Column('ID', asNumber()),
name: Column('Name', asString()),
contact: Object({
email: Column('Email Address', asString()),
phone: Column('Phone Number', asString().optional()),
}),
links: Tuple([Column('Link 1', asString()), Column('Link 2', asString())]),
});
NOTE
Any column in CSV that is not referenced in the schema will be ignored.
Infer Type
Use StaticDecode
to infer schema type
ts
import { type StaticDecode } from 'sheethuahua';
// type Person: {
// id: number;
// name: string;
// }
type Person = StaticDecode<typeof schema>;